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 (Note: prior to reading this document, you should review the companion document, Partitioning of Sums 

of Squares in Simple Linear Regression, which can be found in the Instructional Stuff for Statistics chapter in the 

website for this course.) 

 In this example, I used the data found in the Appendix A (the data have been taken from Pedhauser,1997; 

p. 98). To make this example meaningful, let’s let the variable, Score, be taken as a score on a difficult 10-item, 4-

option, multiple choice achievement test; let X1 be a measure of hours of homework completed the week prior to 

the test; and X2, a measure, on a 10-point scale, indicating how much students value high grades.  

 I used SPSS to conduct the analysis, but other statistical software packages would produce the same or 
similar output

1
. (A much more detailed discussion of regression analysis can be found HERE.) 

 Descriptive Statistics. My first step was to obtain the descriptive statistics (N, Mean, and Standard 
Deviation) for each variable in the analysis. These are shown in Table 1, where a minimal, sufficient set of 
descriptive statistics is given. If we wanted, say, the standard errors of the mean, we could compute these easily. 
For example, 

SEMscore = STDscore / √(Nscore -1) = 2.763/4.359 = .634. 

Table 1. Descriptive Statistics 

  Mean Std. Deviation N 

Score 5.70 2.736 20 

X1 4.35 2.323 20 

X2 5.50 1.670 20 
 

 On the 10-item test, a chance score would be 2.5 items correct, and the standard deviation of a chance 

score is 1.37
2
. From Table 1 it is apparent that the mean score on the test was nearly two standard deviations 

above a chance score. On average, the group taking the test spent a little over four hours, the previous week, 

doing homework. Furthermore, the desirability of high grades was not strikingly high. 

 Next, I had SPSS compute the correlations among all variables in the analysis. This yielded Table 2, where 
the first three rows in the body of the table (i.e, the values enclosed in the larger box) give the correlation matrix 

                                                 
1
 An Excel version of this example is given in Appendix B.  

2
 These values are computed using the binomial distribution with Mchance = k(.25),(where k = number of items, and 

.25 is p, the probability of a correct answer due to chance); and SDchance = (1 )np p . 

http://www.ats.ucla.edu/stat/spss/webbooks/reg/chapter2/spssreg2.htm
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for the three variables. In the matrix, the set of lightly shaded entries is called the diagonal of the matrix. In a 
correlation matrix, these are always 1.0, since each gives the correlation of a variable with itself. I should note, 
also, that a correlation matrix is a symmetric matrix: the upper triangular half of the matrix is a mirror image of the 
lower triangular half (e.g., the correlation of Score with X1 is .771—in the first row to the right of the shaded 1.0—
which is equal to the correlation of X1 with Score (the .771 just below the shaded 1.0 in the first column of the 
matrix).  

Table 2. Correlations 

    Score X1 X2 

Pearson Correlation Score 1.000 .771 .657 

X1 .771 1.000 .522 

X2 .657 .522 1.000 

Sig. (1-tailed) Score . .000 .001 

X1 .000 . .009 

X2 .001 .009 . 

N Score 20 20 20 

X1 20 20 20 

X2 20 20 20 
 

 The second three rows in Table 2 give the (one-tailed) statistical significance of the corresponding 
correlations in the correlation matrix. All correlations are statistically significant. For instance, the significance of 
the correlation between Score and X1 is given as .000. This does not mean that the probability of a correlation of 
.771 due to sampling error is zero. It just means that SPSS rounded the actual probability to three decimal places. 
Therefore, the actual probability is less than .0005. The third set of three rows in Table 2 give the number of cases 
involved in each of the correlations. 

 From the table, we learn that the correlations between all pairs of variables are both statistically 
significant and appreciably large. Having strong correlations between the dependent variable (Score) and each of 
the independent variables (X1 and X2) is desirable because it means that the dependent variable shares variance 
with each of the independent variables.  

 Correlations, especially large correlations, between the independent variables, on the other hand, are not 
desirable. In this case the covariance between the dependent variable and each of the independent variables is not 
unique (in an ideal situation, each independent variable would have a unique and independent association with 
the dependent variable). I will address this later in this presentation. 

 Regression Analysis. The regression analysis is summarized in the next several tables. Table 3 gives a 
general summary of the analysis. The R is the multiple correlation: the correlation between the dependent variable 

(Score) and the weighted linear composite of the independent variables, i.e, rscore,Ŷ  where (Ŷ  = b0 + b1X1 + b2X2). 
The multiple R is interpreted in the same way as a simple zero-order correlation between any two variables. 

 The next value of interest is R-Squared (R
2
). This is an important statistic for it gives the percent of 

variance in the dependent variable (Score) explained or accounted for by the independent variables. Another name 
for R

2
 is the coefficient of determination, a term used mainly when regression analysis is used for prediction. The R

2
 

of .683 tells us that 68% of the variance in Score is associated (we would say explained, accounted for, or predicted 
by the independent variables, X1 and X2. 

 The next statistic in Table 3 is the Adjusted R
2
, a statistic that is not used often. It is an adjustment for the 

number of independent variables in the model. 
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 Finally, the last statistic in Table 3 is the Standard Error of Estimate (SEE). This is the standard deviation of 

the residuals, e, (= ˆy y ) and, as such, gives a measure of the accuracy of the model to predict the Scores (a 

more detailed, yet tractable, description of the SEE can be found in Online Statistics.  

 

Table 3. Model Summary
(b)

 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .826
(a)

 .683 .646 1.628 

a  Predictors: (Constant), X2, X1 
b  Dependent Variable: Score 

 

 The next table, Table 4, is an Analysis of Variance table for the regression analysis. Most of the statistics 
given in the table should already be familiar. The Sums of Squares terms are SSreg and SSres, which are used for 
computing MSreg and MSres (by dividing each SS term by its corresponding degrees of freedom). The F statistic is 
then computed by dividing MSreg by MSres, yielding 18.319 which is significant at p < .0005. Therefore, we conclude 
that we do have a linear model that predicts (or accounts for) variance in the dependent variable. 

Table 4. ANOVA
(b)

 

Model   
Sum of 
Squares df Mean Square F Sig. 

1 Regression 97.132 2 48.566 18.319 .000
(a)

 

Residual 45.068 17 2.651     

Total 142.200 19       

a  Predictors: (Constant), X2, X1 
b  Dependent Variable: Score 

 

 In Table 5 the regression coefficients statistics of the model are given. Here, since we are testing only one 
model (we could have tested more) only one model given. The variables in the model are given first (the constant 
is equal to 

1 1 2 2
Y b X b X  ). Then the computed values of the unstandardized regression coefficients, the bi’s, (B 

in the table) are given, along with their standard errors. The Std. Error’s are used to test the null hypotheses that 
the unstandardized regression coefficients equal zero. This is done, for each b, using a t test with one degree of 
freedom: 

.
b

t
StdErr


 

 

Table 5. Coefficients(a) 

Model   
Unstandardized 

Coefficients 
Standardized 
Coefficients   Collinearity Statistics 

    B Std. Error Beta t Sig. Tolerance VIF 

1 (Constant) -.461 1.285   -.359 .724     

  X1 .693 .189 .589 3.676 .002 .727 1.375 

  X2 .572 .262 .349 2.181 .044 .727 1.375 

a  Dependent Variable: Score 
 

For X1, we have  t(1) = 3.676; p=.002. We conclude that X1 accounts for a statistically significant percent of the 
variance in Scores (Y).  

http://onlinestatbook.com/chapter12/accuracy.html


4 

 

 The standard errors are used, also, to construct confidence intervals around the bs. If you’ve read the 
section on Confidence Intervals and Significance Tests in Hyperstat then you may recall that the 95% confidence 

interval around a population regression coefficient (  ) is given by, 

95 { ( )}.
crit b

CI b t StdErr    

Where tcrit is the tabled value of t with N-1 degrees of freedom at the .05 level. 

Hence, the 95% confidence interval for b1 is: 

 CI95: {.693-(2.1)(.189) <=   <= .693-(2.1)(.189)} 

  = .296 <=   <= 1.090, which DOES NOT include zero. 

 The unstandardized coefficients, the b’s, can be used to construct the actual, sample-estimated, 
regression equation: 

1 2

ˆ .467 .693( ) .572( ).
i i i

Y X X     

Hence, for the first individual in the sample, the estimated (or predicted) score is: 

1.948 = -.461 + .693(1) + .572(3), 

and this individual’s residual score (ei) is 

ˆ( ) 2 1.948 .052.Y Y     

 The standardized coefficients (the Betas) are used to make inferences about the relative importance ( or 
strength) of the independent variables in predicting the dependent variable. Hence, from the table we see that X1 
has a stronger, independent, association with Y since its Beta coefficient is larger. 

 

 The collinearity statistics are a more advanced topic and can be dealt with, here, only briefly. Tolerance 
gives an indication of the percent of variance in an independent variable that cannot be accounted for by the other 
predictors. Very small values (e.g., values less than .1) indicate that a predictor is redundant (i.e., that it carries 
about the same predictive information as other independent variables in the model.) The VIF stands for variance 
inflation factor and gives a measure of the extent to which predictive information in a particular independent 
variable is already contained in the other independent variables. As such, it is a measure of how much a regression 
coefficient is “inflated” by including other, correlated independent variables in the model. Independent variables 
with VIFs greater than 10 should be investigated further. A VIF of 1.0 means that there is no inflation. 

 The statistics shown in Table 5 suggest that we do not have a problem with collinearity in the model. The 
tolerance for X1, for example, tells us that about 70% of the variance in X1 is NOT predicted by X2 (i.e., is not 
strongly associated with X2). Furthermore, X1’s VIF is only 1.375. This tells us that the coefficient for X1, b1, is 
inflated by a factor of, about, only 1.4. 
 

Dummy, Effect, and Orthogonal Coding 

 When we test a null hypothesis that, say, the means of two populations are equal, e.g., H0:
1 2

,  this 

is tantamount to hypothesizing that the knowledge of group membership provides no information to help us 

predict differences among the group outcomes. On the other hand, if we reject the null hypothesis, then we, 

essentially, are saying that knowledge of group membership does predict group outcomes. So, if we had a way to 
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code group membership in such a way that we could regress the outcome measure on the group membership 

code then we could analyze the data using regression analysis. In other words, we could set up a regression model 

such as 

11 10
ˆ ,
i i

Y b b X           (Eq. 1) 

where the X’s carry the codes for group membership. In this case, testing the difference between means is 

equivalent to testing the significance of 
1

b . In what follows, we will see how this is accomplished. 

 There are three types of coding schemes that are widely used in regression analysis to test differences 

among group means: dummy coding, effect coding, and orthogonal coding. Each of these is considered below, first 

in the simple two-group case, then for the cases analogous to a one-way ANOVA, and finally for a factorial ANOVA 

design. 

Two-group Design 

We’ll begin with the simple, two-group design illustrated in Table 6. There, the two groups represent, say, 

two treatment conditions, and the outcome measure, Y, is the dependent variable of interest. 

Table 6 

Outcome Measure, Y 

Group 1 Group 2 

1 3 

2 3 

2 4 

3 4 

2 2 

 

 A t test of the difference between means, using Excel, yields Table 7, where it is shown that both the one-

tailed and two-tailed t tests of the difference between means are statistically significant, t(1) = -2.449; p = .020 

(one-tail); p = .040 (two-tail). To replicate the test using regression we use either effect or orthogonal coding since, 

in the two-group case, dummy coding reduces to orthogonal coding. 

Table 7: t-Test: Assuming Equal Variances 

  Group 1 Group 2 

Mean 2 3.2 

Variance 0.5 0.7 

Observations 5 5 

df 8   

t Stat -2.449   

P(T<=t) one-tail 0.020   

P(T<=t) two-tail 0.040   
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Two-Group Dummy Variable Coding 

 Dummy coding is, perhaps, the easiest system of coding treatment effects (i.e., group membership 

effects) in ANOVA. It uses columns of 1’s and 0’s to identify group membership. For instance, in Table 8, there are 

two “indicator” columns, or variables, i.e., the X’s. For X1, and individual is coded 1 if the individual belongs to 

Group 1, and zero otherwise. For X2, an individual is coded 1 if the individual belongs to Group 2; zero otherwise. 

Thus, the group to which an individual belongs is uniquely identified. An individual in Group 2, for instance, has the 

dummy code: 0 1.  

Table 8: Effect Coding 

 Effect Codes  

Group X1 X2 Y 

1 1 0 1 

1 1 0 2 

1 1 0 2 

1 1 0 3 

1 1 0 2 

2 0 1 3 

2 0 1 3 

2 0 1 4 

2 0 1 4 

2 0 1 2 

 

 However, there is a problem with the coding shown in Table 8. Only one of the two X columns are 

required to identify the groups to which individuals belong. We can ignore either one of the X columns and still be 

able to uniquely identify group membership. For instance, if we ignore X2 then, 

 Individuals in Group 1 are identified by the dummy code: 1 for X1, and 

 Individuals in Group 2 are identified by the dummy code: 0 for X1. 

 Setting-up the regression analysis to regress Y on X involves testing the model given above in Eq. 1, 

where, here, X1 is Effect Code, X1 given in Table 3. Regressing Y on X1, using Excel, yields the following regression 

statistics (Tables: 9, 10, & 11).  

 

Table 9: Regression Statistics 

Multiple R 0.655 

R Square 0.429 

Standard Error 0.775 

Observations 10 
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Table 10: ANOVA (Effect coding) 

  df SS MS F Sig 

Regression 1 3.600 3.600 6.000 0.040 

Residual 8 4.800 0.600     

Total 9 8.400       

 

 In dummy coding, the group coded 0 is known as the reference (or control) group. In dummy coding, the 

intercept is equal to the mean of the reference group. Since, in our example, Group 2 is the reference group, the 

mean for Group 2, given by the intercept in Table 11, is 3.2. Furthermore, in the two-group case, the coefficient 

associated with X1 is the difference between the mean of the group with the dummy code of 1 and the reference 

group. Hence, -1.2 is the difference between the mean of  Group 1 and the reference group (Group 2). 

Table 11: Regression Coefficients (Effect Coding) 

  Coef. Standard Error t Stat P-value 

Intercept 3.200 0.346 9.238 0.000 

X1 -1.200 0.490 -2.449 0.040 

 

 How do these results compare to the t test results given earlier in Table 7 First, recall that for a one-

degree of freedom test, F = t
2
. From Table 2, t =-2.499. t

2
 = 6.000, which is equal to F in Table 10. Note, also, that -

2.449 is the value of the t test for the X1 regression coefficient (Table 6). Furthermore, from Table 7 we note that 

the mean difference,  1 2 1.2,  X X  which is identical to the coefficient for X1, given in Table 11. In other 

words, the effect of the treatment is -1.2 units—whatever the treatment Group 2 received, it resulted in Group 2 

having a mean score 1.2 units below Group 1. Both the t test and the regression analysis provide sufficient 

evidence for rejecting the null hypothesis. The regression analysis does tell us, however, (Table 9) that the 

“treatment“ effect accounted for 43% of the variance in Y (R
2
 = .429). (Incidentally, coefficients are more 

commonly referred to as regression weights (or more accurately unstandardized regression weights). 

 In the t test analysis we are given the mean Y for each group. The means are not given, at least not 

directly, by the regression analysis. However, the means can be computed easily from the regression analysis. 

Recall from the readings, in HyperStat, that the intercept, 

0 1
,b Y b X                               (Eq. 2) 

so that, ignoring group membership, the overall mean of Y is, 

0 1

3.2 ( 1.2)(.5)

2.6.

Y b b X

  



 

 

Considering the groups individually, for Group 1, X = 1, so that Y for Group 1 is given by,  
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 0
3.2 ( 1.2) 1)

2.0.

(b   



 

For Group 2, =0, so that Y for Group 2 is given by, 

0
3.2 (0) 1)

3.2.

(b  



 

Two-Group Effect and Orthogonal Coding 

 In the two-group case, Effect Coding and orthogonal coding are identical. Both types of coding use 1’s and -1’s to 

denote group membership (later we will see that, in orthogonal coding, 0’s and other values are used, depending 

upon the number of groups in the design). For the current example, effect and orthogonal coding would look like 

the coding in Table 12. In the table, you can see that the individuals in each group are uniquely identified by their 

X1 value. 

Table 12: Orthogonal Coding 

Group Effect Code (X) Y 

1 1 1 

1 1 2 

1 1 2 

1 1 3 

1 1 2 

2 -1 3 

2 -1 3 

2 -1 4 

2 -1 4 

2 -1 2 

 

 Using the Regression procedure in Excel yields the results shown in Tables 13, 14 and 15. An advantage of 

effect coding is that, when the group sizes are equal, the intercept, i.e., the coefficient, b0 , is equal to the overall 

mean; furthermore, the coefficient,  bI , is proportional to the difference between the means. In this two-group 

case, bI is equal to half the difference between the means of Group 1 and Group 2:  

1 2

1 2 2

2 3.2

2 2

1 1.6

.6,

YY
b  

 

 

   
 

which, is the value given for the coefficient, X1 in Table 15. 

X
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 The percent of variance in Y accounted for (or explained by) treatment (R
2
) is .43—the same as that given 

in the earlier tables. In fact, the values in Table 13 (and Table 14) are identical to the values given in Table 9 (and 

10)—an indication that, regardless of the type of coding used, the percentage of variance explained by group 

identification is the same.  

Table 13: Regression Statistics 

Multiple R 0.655 

R Square 0.429 

Standard Error 0.775 

Observations 10 

  

Table 14: ANOVA 

  df SS MS F Sig 

Regression 1 3.600 3.600 6.000 0.040 

Residual 8 4.800 0.600     

Total 9 8.400       

  

Table 15: Regression Coefficients 

  Coef. Std Err t Stat Sig 

Intercept 2.600 0.245 10.614 0.000 

OrthCode (X) -0.600 0.245 -2.449 0.040 

  

 What does change, however, are the regression coefficients (compare Table 15 with Table 11). Depending 

upon the type of coding used, the coefficients represent different estimates. In dummy coding, the intercept, b0 , is 

the mean of the group having X coded as zero. With orthogonal coding, on the other hand, b0  represents the 

overall grand mean. Furthermore, with dummy coding the coefficient, b1 , is the difference between  the mean of 

the group coded 1 and the mean of the group coded 0. With orthogonal coding, b1 , is proportional to the 

differences between the groups. 

 Note, also, that in Table 15 (and earlier, in Table 11), t statistics are provided (t Stat). These t statistics are 

used to test the null hypothesis that the corresponding coefficient is zero. For, the intercept, t is 10.614 with p < 

.001. For the coding variable, t =-2.449 with p = .040. Both coefficients are statistically significant. The coefficient 

for the intercept will virtually always be statistically significant and, hence, is of little or no interest. The 

significance of the coded variable (X) tells us that the variable represented by X has an effect, i.e. that the 

difference between Group 1 and Group 2 is statistically significant. 

 

One-way ANOVA Design 

 We will now consider a four-group, one-way ANOVA design. The design is shown in Table 16 
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Table 16: One-way ANOVA Design 

Group 1 Group 2 Group 3 Group 4 

2 3 3 5 

3 1 2 3 

2 2 4 4 

1 3 4 2 

2 2 3 5 

 

 An analysis of variance, using Excel, yielded the results shown in Tables 17 & 18. 

 

Table 17: Descriptive Statistics 

Group N Mean Variance 

Group 1 5 2.000 0.500 

Group 2 5 2.200 0.700 

Group 3 5 3.200 0.700 

Group 4 5 3.800 1.700 

 

Table 18: ANOVA for a Four-group Design 

Source SS df MS F P-value 

Between Groups 10.800 3 3.600 4.000 0.027 

Within Groups 14.400 16 0.900     

Total 25.200 19       

 

The results indicate a significant treatment (Between Groups) effect: F(3,16) =  4.000; p = .027. Ordinarily, a post-

hoc test comparing pairs of group means (e.g., Tukey’s HSD, Newman-Keuls, etc.), would be indicated, but is 

ignored here. 

 

Dummy Coding in One-way ANOVA 

 As mentioned earlier, dummy coding is, perhaps, the easiest system of coding treatment effects (i.e., 

group membership effects) in ANOVA. It uses columns of 1’s and 0’s to identify group membership. For instance, in 

Table 14, there are four “indicator” columns, or variables, i.e., the X’s. For X1, an individual is coded 1 if the 

individual belongs to Group 1, and zero otherwise. For X2, an individual is coded 1 if the individual belongs to 

Group 2, and so on. In this way the group to which an individual belongs is uniquely identified. For instance, an 

individual in Group 2 has the dummy code: 0 1 0 0. 

 Note, however, that, as we saw in the case of the two-group design, there is a redundancy in the coding 

displayed in Table 19. Only three of the four X columns are required to identify the groups to which individuals 

belong. We can ignore any one of the X columns and still be able to identify unique group membership. For 

instance, if we ignore X4 then, 
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Individuals belong to Group 1 have the dummy code: 1 0 0, 

Individuals belong to Group 2 have the dummy code: 0 1 0, 

Individuals belong to Group 3 have the dummy code: 0 0 1, and 

Individuals belong to Group 4 have the dummy code: 0 0 0. 

Table 19:  Dummy Variable Coding 

Group X1 X2 X3 X4 Y 

1 1 0 0 0 2 

1 1 0 0 0 3 

1 1 0 0 0 2 

1 1 0 0 0 1 

1 1 0 0 0 2 

2 0 1 0 0 3 

2 0 1 0 0 1 

2 0 1 0 0 2 

2 0 1 0 0 3 

2 0 1 0 0 2 

3 0 0 1 0 3 

3 0 0 1 0 2 

3 0 0 1 0 4 

3 0 0 1 0 4 

3 0 0 1 0 3 

4 0 0 0 1 5 

4 0 0 0 1 3 

4 0 0 0 1 4 

4 0 0 0 1 2 

4 0 0 0 1 5 

 

 In fact, if all four of the X columns were included in a regression analysis, the redundancy would lead to 

an indeterminate solution. In general, we need only as many Xs as there are independent variable degrees of 

freedom (number of groups -1). 

 To analyze the data in Table 19, we set up the following regression equation. 

1 1 11 1 2 30 2 3
Ŷ b b X b X b X    ,          (Eq. 3) 

using only the first three predictors (X1, X2, and X3). The regression analysis computed in Excel, yielded the results 

shown in Tables 20, 21, and 22. As can be seen, the model accounted for 43% of the variance in the dependent 

variable, Y , i.e., R
2
 = .429 (the fact that this is identical to the R

2 
given in the two-group examples, earlier, is purely 

coincidental.) 
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Table 20: Regression Statistics 

Multiple R 0.655 

R Square 0.429 

Standard Error 0.949 

Observations 20.000 

 

 The analysis of variance table (Table 21) confirms the statistical significance of the regression model, 

F(3,19) = 4.000, p = .027. 

Table 21: ANOVA 

  df SS MS F Sig 

Regression 3 10.800 3.600 4.000 0.027 

Residual 16 14.400 0.900     

Total 19 25.200       

 

 As in the case of a two-group design, when using dummy coding, the group with all zeros for the Xs is 

called the reference (sometimes the control) group. (Obviously, with some rearranging of the 1s and 0s, any one of 

the groups can be designated the reference group.) When examining the regression coefficients (Table 22), the 

coefficient for the intercept is equal to the sample mean of the reference group (in this case, Group 4). Hence, 

3.800 is the mean of Group 2 (see Table 17). Each of the other coefficients are equal to the difference between the 

mean of the reference group and the mean of the group corresponding to the coefficient. For instance, the 

coefficient for X2 is equal to the mean of Group 2 minus the mean of the mean of the reference (2.2 – 3.8 = -1.6). 

 

Table 22: Regression Coefficients 

  Coef. Std Err t Stat P-value 

Intercept (b0) 3.800 0.424 8.957 0.000 

X1 -1.800 0.600 -3.000 0.008 

X2 -1.600 0.600 -2.667 0.017 

X3 -0.600 0.600 -1.000 0.332 

 

 The t tests for the regression coefficients in Table 22 indicate that the difference between Group 1 and 

Group 4, and difference between Group 2 and Group 4 are significant. The difference between Group 3 and Group 

4 is not significant.  

 The empirical regression equation, using the results obtained from the sample is: 

1 2 3
ˆ 3.80 ( 1.80) ( 1.60) ( .60)

i i ii
Y X X X      . 
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Effect Coding in One-way ANOVA 

 Recall, from the effect coding section under the two-group design, that effect coding uses 1’s and -1’s to 

designate group (i.e., treatment group) membership. Since the one-way design being considered here has four 

groups, there are 3 (number of groups minus one) degrees of freedom. In effect coding, there is one (predictor) 

column for each degree of freedom. For the current example, effect coding is given in Table 23.  

Table 23: Effect Coding 

Group X1 X2 X3 Y 

1 1 0 0 2 

1 1 0 0 3 

1 1 0 0 2 

1 1 0 0 1 

1 1 0 0 2 

2 0 1 0 3 

2 0 1 0 1 

2 0 1 0 2 

2 0 1 0 3 

2 0 1 0 2 

3 0 0 1 3 

3 0 0 1 2 

3 0 0 1 4 

3 0 0 1 4 

3 0 0 1 3 

4 -1 -1 -1 5 

4 -1 -1 -1 3 

4 -1 -1 -1 4 

4 -1 -1 -1 2 

4 -1 -1 -1 5 

 

 The regression model for the analysis using effect coding is the same as that given in Eq. 3 using the new 

values for the Xs. Computing the regression analysis, using Excel, yields the results given in Tables 24, 25, and 26. 

Unsurprisingly, the percent of variance in Y explained (R
2
) by the effect variables is .43—the same as was found in 

the regression analysis using dummy variables (Table 20). That this regression model is statistically significant is 

shown in Table 25: F(3,16) = 4.00; P  = .027. These are identical to the results given in Table 21 for the analysis 

using dummy variables. 

Table 24:  Regression Statistics 

Multiple R 0.655 

R Square 0.429 

Standard Error 0.949 

Observations 20 
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Table 25: ANOVA 

  df SS MS F Sig 

Regression 3 10.800 3.600 4.000 0.027 

Residual 16 14.400 0.900 

  Total 19 25.200       

 

 What is different between the analysis using dummy coding and the analysis using effect coding is the 

interpretation of the regression coefficients (Table 26). When using effect coding, the intercept (b0) gives the 

overall grand mean. Each of the other coefficients gives the deviation of the mean of its corresponding group from 

the grand mean. For instance the grand mean, the mean over all cases in the design, is 2.8. The deviation of the 

Group 1 mean from the grand mean is (2 – 2.8 = -.8). 

Table 26: Regression Coefficients 

  Coef. Std Err t Stat P-value 

Intercept 2.800 0.212 13.199 0.000 

X1 -0.800 0.367 -2.177 0.045 

X2 -0.600 0.367 -1.633 0.122 

X3 0.400 0.367 1.089 0.292 

 

 In this analysis, only the deviation of the mean for Group 1 from the overall grand mean is statistically 

significant:  t(1) = -2.177; p = .045. 

 

Orthogonal Coding in One-Way ANOVA 

 Orthogonal coding, for the one-way ANOVA design is similar to effect coding except that 0’s, 1s, and 

higher values are also used to identify group membership. Orthogonal coding requires the two conditions, (1) that 

the sum of the values coded for any given X variable is zero, and (2) that the sum of the cross products (Xi x Xj , for 

all I ≠ j) equal zero. The orthogonal coding given in Table 27 satisfies these conditions. Summing the coded values 

under X1 yields zero. This is true, also, for X2 and X3. Furthermore, summing the cross products (X1 x X2) also 

yields zero. 

 Again the regression model to be analyzed is identical to that given in Eq. 3. Only here, the values of the 

Xs are different. The regression analysis, using the procedure in Excel, yields the same R
2
 (Table 28) and ANOVA 

(Table 29) results as those given earlier in the examples using dummy coding and effect coding. The differences 

occur in the regression coefficients (Table 30). 
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Table 27: Orthogonal Coding 

Group X1 X2 X3 Y 

1 1 1 1 2 

1 1 1 1 3 

1 1 1 1 2 

1 1 1 1 1 

1 1 1 1 2 

2 -1 1 1 3 

2 -1 1 1 1 

2 -1 1 1 2 

2 -1 1 1 3 

2 -1 1 1 2 

3 0 -2 1 3 

3 0 -2 1 2 

3 0 -2 1 4 

3 0 -2 1 4 

3 0 -2 1 3 

4 0 0 -3 5 

4 0 0 -3 3 

4 0 0 -3 4 

4 0 0 -3 2 

4 0 0 -3 5 

 

Table 28: Regression Statistics 

Multiple R 0.655 

R Square 0.429 

Standard Error 0.949 

Observations 20 

  

Table 29: ANOVA 

  df SS MS F Sig 

Regression 3 10.800 3.600 4.000 0.027 

Residual 16 14.400 0.900     

Total 19 25.200       

 

 In orthogonal coding, the intercept estimates the grand mean. The individual regression coefficients 

represent weighted contrasts between group means. The coefficient for X1 is equal to  
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1 2

1
( )

2
Y Y . 

 

Table 30: Regression Coefficients 

  Coef Std Err t Stat P-value 

Intercept 2.800 0.212 13.199 0.000 

X1 -0.100 0.300 -0.333 0.743 

X2 -0.367 0.173 -2.117 0.050 

X3 -0.333 0.122 -2.722 0.015 

  

The coefficient for X2 is equal to 

 
1 2 3

1
( ),

4
2Y Y Y   

and X3, to 

1 2 2 4

1
( ).

6
3Y Y Y Y    

What is important is that the coefficients are proportional to mean differences. For instance, the coefficient for X1 
(i.e., b1) is (1/2)(2.0 - 2.2) or -.1. The coefficient for X2 is (1/4)[(2.0 + 2.2) - 2 x 332], or -.367. And, for X3, the 
regression coefficient is (1/6)[(2.0 + 2.2 + 3.2) - 3 x 3.8], or -.333. 
 

 In this analysis, using orthogonal coding, only the coefficients for X2 and X3 are statistically significant. 

From this we can conclude that the combined mean of Groups 1 & 2 is different from the mean of Group 3 (Group 

3 had a higher mean than the average of Groups 1 & 2.) Furthermore, the mean of Group 4 was significantly 

different from the combined mean of Groups 1, 2 & 3. 

 

Factorial ANOVA Design 

 We will now consider a two-way, 2 x 3, factorial ANOVA design. Aside from a 2 x 2 factorial design, this is 

simplest factorial design we can consider. The design for this example is shown in Table 33. Factor A, which could 

be, for example, type of instruction has two levels (e.g., Level A1 = F2F, and Level A2 = Online). Factor B, which 

might be level of course has three levels (e.g., Level B1 = Elementary, Level B2 = Intermediate, and Level B3 = 

Advanced). 

 To analyze these data, I used the Two-Way Factorial ANOVA for Independent Samples from VassarStats 

(http://vassarstats.net/). The procedure yielded summary statistics that allowed me to construct the descriptive 

statistics table shown in Table 34. Actually, a sufficient table of descriptive statistics needed to include only N, 

http://vassarstats.net/
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Table 33: 2 x 3 Factorial ANOVA Design 

  Factor B 

  Level B1 Level B2 Level B3 

Fa
ct

o
r 

A
 

Level A1 

2 

3 

1 

4 

3 

3 

2 

2 

1 

3 

3 

4 

5 

4 

5 

Level A2 

6 

2 

6 

3 

4 

4 

4 

2 

1 

2 

3 

4 

2 

3 

2 

 

Mean, and SD, although authors often include the other statistics as well. I also used the Excel ToolPac procedure, 

ANOVA: 2 Factor with Replication and obtained the same results (see Appendix C). 

Table 34: Descriptive Statistics for the 2 x 3 ANOVA Design 

   Factor B 

  Statistic Level B1 Level B2 Level B3 TOTAL 

ac
to

r 
A

 

Level A1 N 

Mean 

SD 

5 

2.6 

1.14 

5 

2.2 

0.84 

5 

4.2 

0.84 

15 

3.0 

1.25 

Level A2 N 

Mean 

SD 

5 

4.2 

1.79 

5 

2.6 

1.34 

5 

2.8 

0.84 

15 

3.2 

1.47 

Total N 

Mean 

SD 

10 

3.4 

1.65 

10 

2.4 

1.07 

10 

3.5 

1.08 

30 

3.1 

1.35 

 

The analysis of variance performed by the VassarStats procedure is summarized in the Table 35. The table 

shows that the main effect for Factor A is not significant, F(1,24) = 0.21; p = .651. There is no basis for concluding 

that  Factor A (type of instruction, in this case) has any on the outcome variable (Y). Similarly the main effect of 

Factor B is not significant, F(2,24) = 2.64; p  = .090. Again, we have no basis for concluding that Factor B (Level of 

instruction) has main effect on the outcome variable. The presence of a significant A x B interaction, F(2,24)  = 

4.07, p = .030, however complicates matters. An inspection of the cell means given in Table 34 shows that an  F2F 

environment was more effective for students receiving an elementary level of instruction while an online 

environment was more effective for students receiving an advanced level of instruction. There was little difference 

in the means for F2F and online environments for students receiving an intermediate level of instruction. 
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Table 35: Analysis of Variance Table 

Source SS df MS F p 

Factor A 0.30 1 0.30 0.21 .651 

Factor B 7.40 2 3.70 2.64 .090 

A x B  11.40 2 5.70 4.07 .030 

Residual (error) 33.60 24 1.40   

Total 52.70 29    

 

Dummy Variable Coding in Factorial ANOVA 

 I now turn to analyzing the 2 x 3 ANOVA problem using Regression Analysis. 

 As in the case of a one-way ANOVA, dummy coding is probably the easiest system of coding treatment 

effects. Again, It uses columns of 1’s and 0’s to identify group membership. The Dummy Variable Coding scheme is 

given in Table 36. The coding is for two factors, Factor A having two levels and Factor B having three levels. As 

shown, an individual belonging to the treatment classification, A1B1 had, for D1 thru D5, the values 1, 1, 0, 1, and 

0. An individual in treatment classification, A2B2, has the dummy codes 0,  0, 1, 0, and 0. In this way every 

individual is uniquely identified as belonging to one, and only one, cell in in the 2 x 3 table (Table 33). Note also 

that the redundancies described earlier in the case of two-group dummy coding have been removed.  

One way of determining how many dummy codes are needed is to use the degrees of freedom. The 

Factor A effect has one degree of freedom (number of levels of Factor A minus 1). Hence D1 codes the Factor A 

effect. Factor B has two degrees of freedom (number of levels of Factor B minus 1). Hence, D2 and D3 code the 

Factor B effect. The number of degrees for the A x B interaction is the product of the degrees of freedom for the 

two factors in the interaction: 2 x 1 = 2. In fact the coding of the interactions is easily established by multiplying the 

codes for the variables involved in the interaction. For instance, the first interaction dummy variable is D4. The 

codes for each individual’s D4 are obtained by multiplying D1 times D2. The codes for their D5 variable are 

obtained by multiplying D1 times D2. 

 

Table 36: Dummy Coding for a 2 x 3 Factorial 

ANOVA 

Factor 

A 

Factor 

B 

Effect Variables 

D1 D2 D3 D4 D5 

A1 

B1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

B2 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

Continued on next page. 
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Continued from previous page. 

A1 B3 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

A2 

B1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

B2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

B3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

 

 There is a problem in using dummy coding in a two-way design (and higher) that we did not encounter 

with the analysis of a one-way design. Whereas, with one-way ANOVA designs, the dummy variables are 

independent (i.e., not correlated), this is not the case with the dummy variables in a two-way design. We can see 

this by correlating the dummy variables given in Table 36 (I used Excel to do this). I got the correlation matrix 

shown in Table 37. As is readily seen the correlations between D1 (the dummy code for Factor A) and both D2 and 

D3 (the dummy codes for the Factor B effect) are both zero. Hence the codes for Factor A and Factor B are 

independent. However, the two dummy codes for the Factor B (D2 and D3) are correlated (rD2,D3 = -.5). This means 

that the two dummy codes are confounded. The same is true for the correlations between D1, D2, D3 and the 

dummy codes for the interaction, D4 and D5. Hence, by virtue of the dummy codes used in this scheme, the 

interaction is confounded with both main effects (Factor A and Factor B). Because of this (and for other reasons 

beyond the scope of this development) we cannot use dummy coded regression models with Factorial ANOVA 

designs. We will see that we do not have this problem with effect and orthogonal coding schemes. 

 

Table 37: Correlations Among the Dummy Variables 

  D1 D2 D3 D4 D5 

D1 1.000 
    D2 0.000 1.000 

   D3 0.000 -0.500 1.000 
  D4 0.447 0.632 -0.316 1.000 

 D5 0.447 -0.316 0.632 -0.200 1.000 
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Effect Variable Coding in Factorial ANOVA  

You will recall, from the earlier discussion of regression analysis using effect coding that that effect coding 

uses 1’s and -1’s to designate group membership. For a two-factor design we need dfFactorA effect variables for the 

first Factor and dfFactorB effect variables for the second factor. For the current example, this means 1 effect variable 

for the Factor A and two effect variables for Factor B. 

In a two-factor design there is an interaction, Factor A x Factor B, also. As was shown in the section on 

Dummy Variable Coding in Factorial ANOVA, the number of degrees for the A x B interaction is the product of the 

degrees of freedom for the two factors in the interaction: 1 x 2 = 2. In fact the coding of the interactions is easily 

established by multiplying the codes for the variables involved in the interaction. For instance, the first interaction 

effect variable is E4. The codes for each individual’s E4 are obtained by multiplying E1 times E2. The codes for their 

E5 variables are obtained by multiplying E1 times E2. For the current example, effect coding is given in Table 38. 

 

Table 38. Effect Coding for a 2 x 3 Factorial ANOVA 

Factor 

A 

Factor 

B 

Effect Variables  

E1 E2 E3 E4 E5 Y 

A1 

B1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

3 

1 

4 

3 

B2 

1 

1 

1 

1 

1 

-1 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

-1 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

3 

2 

2 

1 

3 

B3 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

-1 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

-1 

-1 

-1 

-1 

-1 

3 

4 

5 

4 

5 

A2 

B1 

-1 

-1 

-1 

-1 

-1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

6 

2 

6 

3 

4 

B2 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

4 

4 

2 

1 

4 

Continued on next page. 
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Continued from previous page. 

 B3 

-1 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

-1 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

3 

4 

2 

3 

2 

 

The analysis of these data using regression analysis is moderately complicated. It involves partialing out  

the proportion of variance that each effect explains or accounts for. Using the data in Table 38, the full regression 

model is given by, 

0 1 1 2 2 3 3 4 4 5 5
ˆ
FullY b b E b E b E b E b E      ,          (Eq. 4) 

where the ib regression weights ( 0b  is the intercept), and the Ei are the effect variables. To test the effect of 

Factor A, say, we compute a restricted model: 

0 2 2 3 3 4 4 5 5
ˆ
RestrictedY b b E b E b E b E         ,          (Eq. 5) 

where the apostrophes (‘) denote that the coefficients in the restricted model are different from the coefficients in 

the full model. Note that in the restricted model the effect variable for Factor A (i.e., E1) is omitted. Since the full 

model has more explanatory terms (or predictors) in it than does the restricted model, it stands to reason that the 

proportion of variance accounted for (or explained), R
2
, by the full model will be equal to or greater than the R

2
 for 

the restricted model. Hence, we can use the difference in variance explained, R
2

Full – R
2

Restricted as a measure of the 

effect due to Factor A. The significance test for this effect is, 

2 2

2

( ) / ( )
,

(1 ) / ( 1)

Full Restricted Full Restricted

Full Full

R R
F

R N

 


  

df df

df
        (Eq. 6) 

where  

Fulldf = the degrees of freedom for the full model and  

Restricteddf  = the degrees of freedom for the restricted model.  

I used the Regression procedure in the Excel ToolPac to compute the full model and the three restricted 

models (one for each effect, in which the orthogonal variables for the factor under consideration were omitted. 

The regression results for the Full Model, yielded by the Regression procedure in Excel are given in Tables 39 &40. 

 

Table 39: Full Model Regression Analysis (E1 E2 E3 E4 E5) 

SUMMARY OUTPUT 
   

  

  
    

  

Regression Statistics 
   

  

Multiple R 0.602 
   

  

R Square 0.362 
   

  

Adj R Square 0.230 
   

  

Std. Err. 1.183 
   

  

Observations 30.000 
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Table 40: ANOVA of the Full Model 

  df SS MS F Sig 

Regression 5.000 19.100 3.820 2.729 0.043 

Residual 24.000 33.600 1.400 
 

  

Total 29.000 52.700       

  
    

  

  Coef Std Err t Stat Sig   

Intercept 3.100 0.216 14.350 0.000   

E Variable 1 -0.100 0.216 -0.463 0.648   

E Variable 2 0.700 0.306 2.291 0.031   

E Variable 3 -0.400 0.306 -1.309 0.203   

E Variable 4 0.100 0.306 0.327 0.746   

E Variable 5 -0.800 0.306 -2.619 0.015   

 

 As in the case of 4-level One Way ANOVA example given earlier, the coefficients of the Effects Coded 

analysis can be used to compute the cell means in the 2 x 3 factorial design. Recall that in Effect  Coding the 

intercept gives the overall grand mean. Here, this is the overall grand mean for all groups in the analysis (3.100). 

Each of the other coefficients gives the deviation of the mean of its corresponding group from the grand mean. 

Thus, for the group receiving Level A1 of Factor 1, the mean is equal to the intercept plus the coefficient for O1 

(the Effect Code for Factor 1: 

Mean for Level A1 = 3.1 + (-1) = 3.0. 

The mean for Level A2 is equal to the intercept minus the coefficient  for O1: 

Mean for Level A2= 3.1 - (-1) = 3.2. 

 For Factor B, the mean for cases in Level B1 is computed equal to the Intercept plus the sum of the 

coefficients for O2 and O3, or 

Mean for Level B1= 3.1 + (.7 - .3) = 3.4. 

The means for Levels B2 and B3 are obtained by subtracting coefficients  for O2 and O3 respectively: 

Mean for Level B2= 3.1 - .7 = 2.4, and 

Mean for Level B3= 3.1 – (-.4) = 3.5. 

These agree with the marginal means given for the 2 x3 ANOVA design (Table 27). Computing the 

individual cell means in Table 27 considerably more complicated and will not be addressed here (at this time.) 

The analyses yielded the R
2
 statistics shown in Table 41. Applying the equation for the F statistic, given 

earlier. Only the F statistic for the AB interaction, 4.071, is statistically significant at the .05 level. This agrees with 

the analysis from Vassar Stats. 
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Table 41. R2 Summaries for the Full and Restricted Models Using Effect Coding 

Model R
2
 df R

2
 Change* F 

Full model 0.362 5   

Restricted model for Factor A (Omitting O1) 0.357 4 0.006 0.214 

Restricted model for Factor B (Omitting, O2 and O3 0.222 3 0.140 2.643 

Restricted model for AB Interaction (Omitting O4 and O5) 0.146 3 0.216 4.071* 

*R
2

Full – R
2

Restricted 

*p<.05 

 

 

Orthogonal Variable Coding in Factorial ANOVA  

This section has yet to be added. 
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APPENDIX A 

  Example Data set   

  Student Score X1 X2   

  1 2 1 3   

  2 4 2 5   

  3 4 1 3   

  4 1 1 4   

  5 5 3 6   

  6 4 4 5   

  7 4 5 6   

  8 9 5 7   

  9 7 7 8   

  10 8 6 4   

  11 5 4 3   

  12 2 3 4   

  13 8 6 6   

  14 6 6 7   

  15 10 8 7   

  16 9 9 6   

  17 3 2 6   

  18 6 6 5   

  19 7 4 6   

  20 10 4 9   
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APPENDIX B 
Excel version of the Example 

Excel Version of the Example Given in "An Introduction to Linear Regression Analysis" 

           

     
The first thing I did was compute a table of descriptive statistic using  

 

     
Descriptive Statistics in the ToolPac 

   

     
The values needed for a sufficient table of descriptive statistics are bolded 

The Data 
       Studen

t 
Scor

e 
X
1 

X
2 

       1 2 1 3 

 
Score   X1   X2   

2 4 2 5 

       3 4 1 3 

 
Mean 5.700 Mean 4.350 Mean 5.500 

4 1 1 4 

 

Standard 
Error 0.612 

Standard 
Error 0.519 

Standard 
Error 0.373 

5 5 3 6 

 
Median 5.500 Median 4.000 Median 6.000 

6 4 4 5 

 
Mode 4.000 Mode 4.000 Mode 6.000 

7 4 5 6 

 

Standard 
Deviation 2.736 

Standard 
Deviation 2.323 

Standard 
Deviation 1.670 

8 9 5 7 

 

Sample 
Variance 7.484 

Sample 
Variance 5.397 

Sample 
Variance 2.789 

9 7 7 8 

 
Kurtosis -1.047 Kurtosis -0.638 Kurtosis -0.408 

10 8 6 4 

 
Skewness 0.041 Skewness 0.198 Skewness 0.151 

11 5 4 3 

 
Range 9.000 Range 8.000 Range 6.000 

12 2 3 4 

 
Minimum 1.000 Minimum 1.000 Minimum 3.000 

13 8 6 6 

 
Maximum 10.000 Maximum 9.000 Maximum 9.000 

14 6 6 7 

 
Sum 114.000 Sum 

87.00
0 Sum 

110.00
0 

15 10 8 7 

 
Count 20.000 Count 

20.00
0 Count 20.000 

16 9 9 6 

       17 3 2 6 

       18 6 6 5 

 
The next thing I did was comute a table of correlations (a correlation matrix) using 

19 7 4 6 

 
 Correlation in the ToolPac 

   20 10 4 9 

       

     
  Score X1 X2 

  

     
Score 1.000 

    

     
X1 0.771 1.000 

   

     
X2 0.657 0.522 1.000 

  

            
    

I used the formula in for determining the significance of a correlation, given in  

     
HyperstatOnline, Chapter 15 

   

           

     

t test for sig of 
r Score X1 X2 

  

     
Score 1.000 3.693 3.693 

  

     
X1 5.136 1.000 2.598 

  

     
X2 3.693 2.598 1.000 
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Then, using a t table, with 20-2 = 18 df, I determined that all three correlations 

     
were statiscially significant 

     
My next step was to comput a regression analysis using Regression in the ToolPac 

           

     
SUMMARY OUTPUT 

    

           

     
Regression Statistics 

    

     
Multiple R 0.826 

    

     
R Square 0.683 

    

     

Adjusted R 
Square 0.646 

    

     

Standard 
Error 1.628 

    

     
Observations 20.000 

    

           

           

           

           

     
ANOVA 

     

     
  df SS MS F Sig of F 

     
Regression 2.000 97.132 

48.56
6 18.319 0.000 

     
Residual 17.000 45.068 2.651 

  

     
Total 19.000 142.200     

 

           

     
  

Coefficient
s 

Standard 
Error t Stat P-value 

 

     
Intercept -0.461 1.285 -0.359 0.724 

 

     
X1 0.693 0.189 3.676 0.002 

 

     
X2 0.572 0.262 2.181 0.044 

 

           

     
These statistics agree with what I computed using SPSS. The only thing missing are  

     
the colinearity statistics, which could have been addressed using the options 

     
available in Regression 
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APPENDIX C 

Excell Replication of the VassarStats 2 x 3 ANOVA Example 

2 x 3 ANOVA Example 
        

   
As a first step, I used ANOVA: 2 Factor with Replication.  

Factor B 
 

For th Input Range I gave it $A$3:$D$14. This returned the  

Level B1 Level B2 Level B3 

 
following results 

2 3 3 

       3 2 4 

 
Anova: Two-Factor With Replication 

  1 2 5 

       
4 1 4 

 
SUMMARY 

Level 
B1 

Level 
B2 

Level 
B3 Total 

 3 3 5 

 
Level A1         

 6 4 3 

 
Count 5.000 5.000 5.000 15.000 

 2 4 4 

 
Sum 13.000 11.000 21.000 45.000 

 6 2 2 

 
Average 2.600 2.200 4.200 3.000 

 3 1 3 

 
Variance 1.300 0.700 0.700 1.571 

 4 2 2 

       

    
Level A2         

 

    
Count 5.000 5.000 5.000 15.000 

 

    
Sum 21.000 13.000 14.000 48.000 

 

    
Average 4.200 2.600 2.800 3.200 

 

    
Variance 3.200 1.800 0.700 2.171 

 

          

    
Total       

  

    
Count 10.000 10.000 10.000 

  

    
Sum 34.000 24.000 35.000 

  

    
Average 3.400 2.400 3.500 

  

    
Variance 2.711 1.156 1.167 

  

          

    
ANOVA 

     

    

Source of 
Variation SS df MS F 

P-
value 

    
Sample 0.300 1.000 0.300 0.214 0.648 

    
Columns 7.400 2.000 3.700 2.643 0.092 

    
Interaction 11.400 2.000 5.700 4.071 0.030 

    
Within 33.600 24.000 1.400 

  

          

    
Total 52.700 29.000       

 
   

These results agree with the results from VassarStata. 

 


