Partitioning of Sums of Squares in Simple Linear Regression

George H Olson, Ph. D.
Leadership and Educational Studies
Appalachian State University

The parametric model for the regression of Y on X is given by

$$
\begin{equation*}
Y_{i}=\alpha+b X_{i}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

The model for the regression of Y on X in a sample is

$$
\begin{equation*}
Y_{i}=a+b X_{i}+e_{i} \tag{2}
\end{equation*}
$$

Calculation of the constants in the model:
the slope (b) is given by

$$
\begin{align*}
& b=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}} \tag{3}\\
& \text { where } x_{i}=\left(X_{i}-\bar{X}\right),
\end{align*}
$$

and the intercept by

$$
\begin{equation*}
a=\bar{Y}-b \bar{X} . \tag{4}
\end{equation*}
$$

Using the coefficients, a and b, we can construct an equation for estimating (or predicting) an individual's score on Y :

$$
\begin{equation*}
\hat{Y}_{i}=a+b X_{i} \tag{5}
\end{equation*}
$$

A closer look at the regression equation, (5), and using (3) and (4) leads us to

$$
\begin{align*}
\hat{Y}_{i} & =a+b X_{i} \\
& =(\bar{Y}-b \bar{X})+b X_{i} \tag{6}\\
& =\bar{Y}+b\left(X_{i}-\bar{X}\right) \\
& =\bar{Y}+b X_{i} .
\end{align*}
$$

Partitioning the Sum of Squares, $\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$.
First, consider the following identity

$$
\begin{equation*}
Y_{i}=\bar{Y}+\left(\hat{Y}_{i}-\bar{Y}\right)+\left(Y_{i}-\hat{Y}_{i}\right) . \tag{7}
\end{equation*}
$$

If we subtract \bar{Y} from each side of the equation, we obtain

$$
\begin{equation*}
Y_{i}-\bar{Y}=\left(\hat{Y}_{i}-\bar{Y}\right)+\left(Y_{i}-\hat{Y}_{i}\right) \tag{8}
\end{equation*}
$$

After squaring and summing, we have

$$
\begin{align*}
\sum\left(Y_{i}-\bar{Y}\right)^{2} & =\sum\left[\left(\hat{Y}_{i}-\bar{Y}\right)+\left(Y_{i}-\hat{Y}_{i}\right)\right]^{2} \\
& =\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2} \tag{9}\\
& +2 \sum\left(\hat{Y}_{i}-\bar{Y}\right)\left(Y_{i}-\hat{Y}_{i}\right)
\end{align*}
$$

or, after simplifying ${ }^{1}$,

$$
\begin{align*}
\sum y_{i}^{2} & =\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum\left(Y_{i}-\hat{Y}\right)^{2} \tag{10}\\
& =S S_{r e g}+S S_{r e s}
\end{align*}
$$

Where $S S_{\text {reg }}=$ regression sum of squares, and $S S_{\text {res }}=$ residual sum of squares.
Dividing (10) through by the total sum of squares, $S S_{\text {tot }}\left(=\sum y^{2}\right)$ gives

$$
\begin{equation*}
\frac{\sum y_{i}^{2}}{\sum y_{i}^{2}}=\frac{S S_{r g}}{\sum y_{i}^{2}}+\frac{S S_{r s s}}{\sum y_{i}^{2}} \tag{11}
\end{equation*}
$$

or

[^0]\[

$$
\begin{equation*}
1=\frac{S S_{r e g}}{\sum y_{i}^{2}}+\frac{S S_{r e s}}{\sum y_{i}^{2}} \tag{12}
\end{equation*}
$$

\]

A computational example

It is often useful to devise simple computational examples, such as the following:

\underline{Y}	
3	1
1	0
0	1
4	-1
5	2

The means of the two variables, Y and X are

$$
\begin{aligned}
& \bar{X}=\frac{\sum X_{i}}{n}=\frac{3}{5}=.6 \\
& \bar{Y}=\frac{\sum Y_{i}}{n}=\frac{13}{5}=2.6
\end{aligned}
$$

Having computed the means, we now compute the deviations, squares of deviations, and cross-products of deviations

Deviations, squares, and cross-products

\underline{y}	\underline{y}	$\underline{y^{2}}$	\underline{X}	\underline{x}	$\underline{x^{2}}$	$\underline{x y}$
3	.4	.16	1	.4	.16	.16
1	-1.6	2.56	0	-.6	.36	.96
0	-2.6	6.76	1	-1.6	2.56	4.16
4	1.4	1.96	-1	.4	.16	.56
5	2.4	5.76	2	1.4	1.96	3.36

The sums of squares and cross-products are computed as

$$
\begin{aligned}
& \sum x_{i}^{2}=5.2 \\
& \sum y_{i}^{2}=17.2 \\
& \sum x_{i} y_{i}=9.2
\end{aligned}
$$

and the regression coefficients as

$$
b=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}=\frac{9.2}{5.2}=1.769
$$

and

$$
a=\bar{Y}-b \bar{X}=2.6-1.769 * .6=2.6-1.061=1.539 .
$$

The regression equation can now be written as

$$
Y_{i}^{\prime}=1.539+1.769 X
$$

From an earlier equation (10) we obtain

$$
\begin{align*}
S S_{r e g} & =\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2} \\
& =\sum\left[\left(\bar{Y}+b x_{i}\right)-\bar{Y}\right]^{2} \\
& =\sum\left(\bar{Y}+b x_{i}-\bar{Y}\right)^{2} \\
& =\sum\left(b x_{i}\right)^{2} \\
& =b^{2} \sum x_{i}^{2} \\
& =\left(\frac{\sum x_{i} y_{i}}{\sum x^{2}}\right) \sum x_{i}^{2} \\
& =\frac{\left(\sum x_{i} y_{i}\right)^{2}}{\sum x^{2}} \tag{13}\\
& =\frac{84.64}{5.2} \\
& =16.28 .
\end{align*}
$$

Note that we could also have computed

$$
\begin{align*}
S S_{\text {reg }} & =b \sum x_{i} y_{i} \\
& =1.769 * 9.2 \tag{14}\\
& =16.28 .
\end{align*}
$$

An alternative calculation is given by

$$
\begin{align*}
S S_{r e g} & =b^{2} \sum x_{i}^{2} \\
& =(1.769)^{2} * 5.2 \tag{15}\\
& =3.1294 * 5.2 \\
& =16.28
\end{align*}
$$

Hence,

$$
\begin{align*}
S S_{r e s} & =\sum y_{i}^{2}-S S_{r e g} \tag{16}\\
& =17.2-16.28 \\
& =.92
\end{align*}
$$

The equation for the Pearson correlation is

$$
\begin{equation*}
r_{x y}^{2}=\frac{\left(\sum x_{i} y_{i}\right)^{2}}{\sum x_{i}^{2} \sum y_{i}^{2}} \tag{17}
\end{equation*}
$$

Therefore, $S S_{\text {res }}$ can also be computed as

$$
\begin{align*}
r_{x y}^{2} \sum y_{i}^{2} & =\frac{\left(\sum x_{i} y_{i}\right)^{2}}{\sum x_{i}^{2} \sum y_{i}^{2}} \sum y_{i}^{2} \\
& =\frac{\left(\sum x_{i} y_{i}\right)^{2}}{\sum x_{i}^{2}} \tag{18}\\
& =S S_{r e g}
\end{align*}
$$

Appendix

Showing the Simplification of the Partitioning of SS_{γ}
Beginning with,

$$
\begin{aligned}
\sum\left(Y_{i}-\bar{Y}\right)^{2} & =\sum\left[\left(\hat{Y}_{i}-\bar{Y}\right)+\left(Y_{i}-\hat{Y}_{i}\right)\right]^{2} \\
& =\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2} \\
& +2 \sum\left(\hat{Y}_{i}-\bar{Y}\right)\left(Y_{i}-\hat{Y}_{i}\right),
\end{aligned}
$$

we need to show that

$$
2 \sum\left(\hat{Y}_{i}-\bar{Y}\right)\left(Y_{i}-\hat{Y}_{i}\right)=0 .
$$

Recalling (4, 5 \& 6) we can write,

$$
\begin{aligned}
2 \sum\left(\hat{Y}_{i}-\bar{Y}\right)\left(Y_{i}-\hat{Y}\right) & =2 \sum\left(\left(\bar{Y}-b \bar{X}+b X_{i}\right)-\bar{Y}\right)\left(Y_{i}-\hat{Y}_{i}\right) \\
& =2 \sum\left(\left(\bar{Y}+b\left(X_{i}-\bar{X}\right)-\bar{Y}\right)\left(Y_{i}-\hat{Y}_{i}\right)\right) \\
& =2 \sum\left(b\left(X_{i}-\bar{X}\right)\left(Y_{i}-\hat{Y}\right)\right) \\
& =2 \sum b\left(X_{i}-\bar{X}\right)\left(Y_{i}-(\bar{Y}-b \bar{X})+b X_{i}\right) \\
& =2 b \sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\left(\bar{Y}+b\left(X_{i}-\bar{X}\right)\right)\right) \\
& =2 b \sum\left(X_{i}-\bar{X}\right)\left(\left(Y_{i}-\bar{Y}\right)-b\left(X_{i}-\bar{X}\right)\right) \\
& =2 b \sum\left(\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)-b\left(X_{i}-\bar{X}\right)^{2}\right) \\
& =2 b \sum\left(x_{i} y_{i}-b x_{i}^{2}\right) \\
& =2 b\left[\sum x_{i} y_{i}-\left(\frac{\sum x_{i} y_{i}}{\sum x_{i} x^{2}}\right) \sum x_{i}^{2}\right] \\
& =2 b\left(\sum x_{i} y_{i}-\sum x_{i} y_{i}\right) \\
& =0 .
\end{aligned}
$$

[^0]: ${ }^{1}$ See the appendix to see how the equation simplifies.

