Partitioning Sums of Squares in ANOVA

George H Olson, Ph. D.
Leadership and Educational Studies
Appalachian State University

(Fall 2010)

In this brief paper, I show how the total sums of squares ($S S$) for variable, $Y_{i j}$ can be partitioned into two sources, sums of squares between groups $\left(S S_{\mathrm{B}}\right)$ and sums of squares within groups ($S S_{\mathrm{W}}$).

We begin with deviation scores, $\left(Y_{i j}-\bar{Y}_{. .}\right)$, where $Y_{i j}$ is the score for an individual, i, in group j. Next, square and sum the deviation scores over all individuals, over all groups:

$$
\begin{aligned}
\sum_{j} \sum_{i}\left(Y_{i j}-\bar{Y}_{. .}\right)^{2} & =\sum_{j} \sum_{i}\left[\left(Y_{i j}-\bar{Y}_{. j}\right)+\left(\bar{Y}_{. j}-\bar{Y}_{. .}\right)\right]^{2} \\
& =\sum_{j} \sum_{i}\left(Y_{i j}-\bar{Y}_{. j}\right)^{2}+\sum_{j} \sum_{i}\left(\bar{Y}_{. j}-\bar{Y}_{. .}\right)^{2} \\
& +2 \sum_{j} \sum_{i}\left(Y_{i j}-\bar{Y}_{. j}\right)\left(\bar{Y}_{\cdot j}-\bar{Y}_{. .}\right)
\end{aligned}
$$

Note, however, that

$$
2 \sum_{j} \sum_{i}\left(Y_{i j}-\bar{Y}_{. j}\right)\left(\bar{Y}_{. j}-\bar{Y}_{. .}\right)=2 \sum_{j}\left(\bar{Y}_{. j}-\bar{Y}_{. .}\right) \sum_{i}\left(Y_{i j}-\bar{Y}_{. j}\right)
$$

since $\left(Y_{i j}-\bar{Y}_{\cdot j}\right)$ is the same for all individuals, i, in group j.
It might be easier to consider the expression,

$$
2 \sum_{j} \sum_{i}\left(y_{i j}\right)\left(\bar{y}_{\cdot j}\right)=2 \sum_{j}\left(\bar{y}_{\cdot j}\right) \sum_{i}\left(y_{\cdot j}\right),
$$

where $y_{i j}=\left(Y_{i j}-\bar{Y}_{\cdot j}\right)$ is the deviation score for individuals in Group j, and $\bar{y}_{. j}$ is the deviation of \bar{y} for Group j from the over all mean.

Furthermore,

$$
\sum_{j} \sum_{i}\left(\bar{Y}_{. j}-\bar{Y}_{. .}\right)^{2}=\sum_{j} n_{j}\left(\bar{Y}_{. j}-\bar{Y}_{. .}\right)^{2}
$$

because, within each group, $j,\left(\bar{Y}_{. j}-\bar{Y}_{.}\right)$is constant (i.e., $\sum c=n c$.)

Hence,

$$
\sum_{j} \sum_{i}\left(Y_{i j}-\bar{Y}_{. .}\right)^{2}=\sum_{j} \sum_{i}\left(Y_{i j}-\bar{Y}_{. j}\right)^{2}+\sum_{j} n_{j}\left(\bar{Y}_{. j}-\bar{Y}_{. .}\right)^{2} .
$$

The first term on the right, $\sum_{j} \sum_{i}\left(Y_{i j}-\bar{Y}_{\cdot j}\right)^{2}$, is called the within group sums of squares (it is the sum of squared deviations of all individuals from the individual's respective group mean.) The second term on the right, $\sum_{j} n_{j}\left(\bar{Y}_{. j}-\bar{Y}_{. .}\right)^{2}$, is called the between groups sums of squares (it is equal to the sum of squared deviations of each group mean from the overall mean.)

