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No course in statistics, especially intermediate inferential statistics would be complete 

without at least a casual stroll down the path of probability theory and probability distributions. 

After all, the field of statistics is all about computing the probability of events, as in what is the 

probability that the coin I toss will land on heads? Or, to take a more relevant example, what is 

the probability of a student getting seven of ten True-False item correct? Or, as yet another 

example, what is the probability that an observed difference in group means is just a chance 

occurrence?  

In this week’s lesson we will take that stroll, beginning with a primer on elementary 

probability theory followed by an examination of several probability distributions.  

Basic Probability Theory 

Probability. The probability of an event is defined as:  



 Probability of an event = the frequency of the event / number of possible events, or 

Pr{ } ( ) / ( )event Freq event N events . 

For instance, suppose that at there are currently 2,214 graduate students enrolled Appalachian, and 

that, of these, 883 are male. Then the probability of selecting a male graduate student at random is 

given by 

Pr{male} = 883/2214 

                 =.399. 

While we sometimes multiple the probability by 100 and talk about a nearly 40% chance of 

selecting a male from the Appstate graduate students, this is not actually strictly accurate. While 

probabilities, because they similar to proportions, can easily be converted to percentages, 

probabilities are always decimal values between zero (0) and one (1). 

 Now, suppose the 2214 graduate students are distributed as shown in the table below. 

What is the probability of selecting, at random, a male younger than 21? Or, a male younger than 

31? Or a male > 30 and a female < 31 (assuming we are trying to arrange some match making)? 

These probabilities are more complicated. Before we answer these questions I need to introduce 

some additional ideas about probability. 

 

Fictitious Distribution of Graduate Students at Appstate 

 

Sex 
Age Category 

TOTAL 
<21 21-31 >31 

Female 210 575 546 1,331 

Male 220 372 291 883 

TOTAL 430 947 837 2,214 

 

Independent vs. Dependent Events 

 Events are classified as belonging to one of two categories: independent events or dependent 

events. 

 Independent Events. Independent events are those events where the occurrence of one event 

has no effect on the occurrence of another event. The typical example is throwing a die and flipping a 

coin. The probability of throwing any face (1, 2, …, 6) on a die is 1/6, or .167. The probability of a head 

(or a tail) on a flip of a coin is .5. The probability of the outcome of a flip of a coin is independent of the 

outcome of a throw of a die. 

 Dependent Events. Events are dependent when the probability of the occurrence of one event is 

influenced (conditioned) by the probability of another event. Again, a typical example is drawing a card 



from a deck of 52 cards. Suppose, in a game of blackjack, the first card dealt is an Ace. What is the 

probability that the second card drawn is also an Ace? 

 The probability of an Ace on the first card dealt is 4/52, or .0769. The probability of an Ace on 

the second card dealt depends upon the fact that the first card dealt was an Ace—there are only three 

aces left in the deck. Hence, the probability that the second card dealt is an Ace is 3/51, or .0588. This is 

different from the probability of dealing an Ace second if the first card was anything other than an Ace:  

4/51, or .0784. 

Basic Rules of Probability 

  There are four basic rules of probability. These rules always hold—there are no exceptions. 

 Rule 1: . All probabilities lie in the inclusive interval, 0 – 1. An outcome of an event having 

probability 0 can never happen; an outcome of an event having probability 1 will always happen. 

 Rule 2: Compliments. If p = the probability of an outcome then q = (1 – p) is the compliment of 

that probability. Hence, p + q = 1. 

 Rule 3 Union (also called the additive rule): The probability of the union of the outcomes of two 

or more, mutually exclusive events is the probability that one of the events will occur. This is 

represented using the union symbol,  . For example, let A represent one possible outcome, B, another 

possible outcome, and C, yet another possible outcome, then the probability of A or B or C is given by: 

Pr{A  B C} = Pr{A} + Pr{B} + Pr{C}. 

For instance, the probability of a 2, a 3, or a 4 on a single throw of a die is  

Pr{2  3 4} = Pr{2} + Pr{3} + Pr{4} 

           = 1/6 + 1/6 +1/6 

           = 3/6 = .5. 

It should be obvious, from Rule 1, Pr{ A  B C} = 1. Also, form Rule 2, if there is a fourth 

possible outcome, D, then Pr{D} = 1 - Pr{A  B C}.  

When the possible outcomes are NOT mutually exclusive, the probability of two outcomes, A or 

B, is given by 

Pr{A  B} = Pr{A} + Pr{B} - Pr{A B} .  

For three events the probability is  

Pr{A  B C} = Pr{A} + Pr{B}+ Pr{C} –({Pr{A B}+ Pr{A C}+ Pr{B C}+ Pr{A  B C}), 

where the intersection (e.g., Pr{A B}) is defined in Rule 4, next. 



Rule 4, intersection (also called the multiplicative rule): The probability of the intersection of the 

outcomes from two or more events is the probability that both (or all) the events will occur. The 

intersection is represented by the symbol,  . For example, if A, B, and C are three possible, 

independent outcomes. Then the probability of A and B and C is given by: 

Pr{A  B C} = Pr{A} × Pr{B} × Pr{C}. 

For instance, the probability of “snake eyes” and a head on the throw of two dice and the flip of a coin is 

given by the product, 

  (1/6)(1/6)(.5) = .0139.  

Conditional Probability 

The conditional probability of an event is the probability of an event given the occurrence of 

some other event. For instance, for the distribution of Appstate graduate students, shown in the table, 

earlier, the probability of selecting, at random, a male graduate student (M) who is less than 21 years 

old (<21) is  

Pr{ ( 21)}
Pr{ | ( 21)}

Pr{( 21)}

 
 



MG
MG . 

(Note the expression, 
21Pr{ | }MG A

,  here, is read as, the probability of selecting a male 

graduate student from those who are less than 21 years old. Pr{ ( 21)} MG  is the joint 

probability of MG  and (<21), or 
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Similarly, the probability of female graduate student 21 years or older is given by (and this is just a little  

more complicated): 

   

Pr{ ( 21)}
Pr{ | ( 21)}

Pr{( )}

Pr{ } Pr{(21 31) ( 31)}

Pr{ } (Pr{(21 31) Pr{( 31)})

947 837
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.4844.
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Hence, we are much more likely to select a female over 30 than we are to select a male under 21. 

 You do not have to compute these, and other probabilities by hand. A Convenient Probability 

Calculator is available on the web.  

Probability Distributions 

In this section, we consider, in more or lesser depth, six probability distributions: 

Poisson distribution, 

Binomial distribution. 

Normal distribution, 

Chi square distribution, 

t distribution, and 

f distribution. 

 

Poisson Probability Distribution 

 

We begin with the Poisson distribution, named for the Paris statistician, Siméon-Denis Poisson 

(1781-1840). The Poisson probability distribution is particularly useful when we know the rate of 

occurrence of some event over a defined period of time and would like to know the likelihood of a 

greater (or lesser) rate of occurrence at some other period of time. 

 

Suppose, over a 12 week period, 31 incidences of bullying were reported to have occurred in the 

playground. 31 incidences in 12 weeks averages out to 2.58 incidences per week. So, assuming a rate (r) 

of 2.58 incidences per week how likely are we to experience a week in which 0, 1, 2, 3, 5, … incidences of 

bullying are reported? Letting Δ (delta) = the number of incidences of bullying per week in which we are 

interested (e.g., Δ=0,1,2,3, 4, 5…), then using the Poisson probably distribution we compute 

 

Pr{Δ} = rΔ /( Δ!)(er),  

 

where Δ! Is delta factorial, and e is the constant, 2.178282. For the current example, with r = 2.58, we 

can compute the probability of Δ=3 as follows: 

 

Pr{Δ=3} =2.583/(3!)(e2.58) 

              =17.174/(6e2.58) 

              =17.174/(6×13.19714) 

              =17.174/79.18283 

              =.217. 

 

Hence, we can expect 3 incidences in about 2 out of every 10 weeks. Similarly, we can compute the 

probability of ., Δ=0,1,2,3, 4, 5, 6…, as shown in the following table. A quick inspection of the table 

reveals that there is a fairly low, but not zero, probability of a week with no reported bullying 

http://stattrek.com/online-calculator/probability-calculator.aspx
http://stattrek.com/online-calculator/probability-calculator.aspx


incidences. Weeks in which 1, 2, and 3 bullying incidences are reported are expected to occur around 

20% of the time 4 incidences about 14% of the time. However, the probability of weeks in which 5 or 

more incidences of bullying are expected to occur fall off rapidly. 

 

Predicted Probability of a Given Number 
Bullying Incidences in Any Given Week 

No. of Incidences Probability 

0 .076 

1 .195 

2 .252 

3 .217 

4 .140 

5 .072 

6 .031 

7 .011 

8 .004 

9 .001 

10 <.001 

  

In the table you should note the following characteristics, which are characteristics of a Poisson 

probability distribution: The highest probability occurs close to the rate, and the probability distribution 

is skewed to the right (i.e., the probabilities bunch up around the rate of incidences and diminish rapidly 

as the predicted number of incidences increase).  

 

Fortunately, you do not actually have to compute the Poisson probability distribution. There is 
an online Poisson Calculator available on the web.  

Binomial Probability Distribution  

Bernoulli trials. Before turning to the binomial distribution, we first need to introduce a new 
term, Bernoulli trials (or Bernoulli experiments). Basically, a Bernoulli trial is one of a series of random 
processes (or experiments) each of which consists of independent events with two possible, mutually 
exclusive outcomes with known probabilities of occurrence. Tossing coins, either several at one time, or 
several tosses in sequence, is an example of such a process. Each coin tossed has a .5 probably of 
landing on a head (or a tail). 

The binomial distribution. The binomial distribution, sometimes inaccurately called the 
Bernoulli distribution, gives the probabilities of a number of successful outcomes in a series of Bernoulli 
trials. For instance, suppose you were playing red at a roulette wheel in a Las Vegas casino and had 
enough money to bet the same amount, $20, say, to play the wheel 10 times. Obviously, you would like 
to come out ahead. To come out even, you would need to win more than 5 times (actually six times, 
since a US wheel has two green slots, for 0 and double 0). Including the green slots, there are 38 
possible outcomes of which 18 are red. Therefore, the probability of landing on red in a single spin is 
18/38, or .4737. You want to know the probability of landing on red at least six times in 10 spins. This 
problem is solved using the binomial distribution. 

http://stattrek.com/online-calculator/poisson.aspx


The conditions that must be satisfied when using the binomial distribution to compute the 
probability of a random event, X, are that: 

I. there is a fixed number of events (trials), n, 
II. each event is independent of all other events, 

III. the outcome of each event represents one of only two, possible, mutually exclusive 
outcomes, and 

IV. The probability of the event, p,  is the same on each outcome. 

For the example just given, n is 10, p is .4737, the events (trials, or spins) are independent, and 
outcomes (red or not red) are mutually exclusive.   

When these conditions are met, the binomial probability of r events occurring in n trials, where 
the individual probability of an event is p is given by, 
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Note: the notation,
n rC , is read as the “number of combinations of n things taken r at a time. For us, 

this is the combination of 6 reds in 10 trials. Hence, we have, 

6 (4)

10 6

6 (4)

6 4

6 4

6 4

6 4

.4737 (1 .4737)

10!
.4737 (1 .4737)

6!(10 6)!

10!
.4737 .5263

6!(4)!

10 9 8 7 6 5 4 3 2 1
.4737 .5263

(6 5 4 3 2 1)(4 3 2 1)

10 9 8 7
.4737 .5263

(4 3 2 1)

5040
.4737 .5263

24

210 .0113

rP C   

   


 

        
 

       

  
 

  

 

  0 .07672

.1821.





 

So, the probability of landing on red exactly six times in 10 spins is less than .2 (there is less than 
a 20% chance of landing on red exactly six times in 10 spins). But, landing on red six or more times is fine 
with us. What we want, then, is the probability of landing on red six or more times. To obtain this 

probability we need compute 
rP  for r = 7, 8, 9, and 10, and sum all of these along with the one we just 



computed. Fortunately, a convenient Binomial Calculator, provided by STAT TEC is available. Using the 
calculator, we find that the probability of landing on red six or more times in 10 spins is only .314—less 
than 30% of the time. We are better off saving our money for dinner and a show. 
 

Some additional examples may help.  
 

Example. If the probability of graduating from a particular college in four years is 0.4, then if 10 
students are selected at random from that college, what is the probability that at least 3 of them will not 
graduate in 4 years? What we are given, then, is: 

 
Number of trials, n, is 10,  
Probability, p, of Graduating in 4 years is p = 0.4, and the 
Probability, q, of NOT Graduating in 4 years is (1-p) or .6,  
 
We are interested in computing the probability that at least 3 of the 10 students selected at 

random fail to graduate on time. This is equal to 1 minus the probability that, at most, 7 do graduate in 

four years. We can approach this problem in one of two ways. We can either calculate Pr{3 or more do 

NOT graduate} or 1-Pr{7 or more DO graduate}. Using the binomial calculator, and counting not 

graduating as a “success,” we obtain 

Pr{Not Graduating ≥ 3} = .988. 

Calculating the other way, using the Binomial Calculator, we obtain 

Pr{Graduating  ≥ 7} = .012, and then compute 

Pr{Not Graduating ≥ 3} = 1-.012 = .988. 

So, either way, the probability of three of the ten students not graduating in four years is pretty high. 

 Another Example. Here is a more interesting example, originally offered by Ben P. Stein (2003). 

Stein wondered: assuming that the two teams meeting in the World Series are evenly matched, what 

are the chances that the World Series will go the full 7 games?” In arriving at his answer, Stein calculated 

the probabilities of a World Series ending at 4 games or going on to 5, 6, and 7 games. (Stein’s article is 

fun to read, for baseball fans and statisticians alike.) How did Stein calculate these probabilities? 

Begin with the (unlikely) assumption that the two teams are equal, i.e., evenly matched. Define 
a successful event as a win. For four games (trials) the binominal probability is given by: 

4 4

4 4 4

4 0

.5 .5
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4!(4 4)!

4 3 2 1
.625 1

(4 3 2 1) 0!

.0625.

P C  

  


  
  

   



 

http://stattrek.com/Tables/Binomial.aspx
http://stattrek.com/
http://stattrek.com/Tables/Binomial.aspx


Calculating the probability that the series ends after 5 games is a little more difficult. The 

probability is actually .25; but, how do we arrive at this probability? Well, we know that the only way the 

series can end after exactly 5 games is if one of the teams has won 3 of the first 4 games (if both teams 

have won two games, the series will go to at least 6 games). 

The probability that one of the teams (Team A or Team B, say) wins exactly 3 of the first 4 games 

is 
3 (4 3)

3 4 3

3 1

.5 .5

4!
.5 .5

3!(4 3)!

24
.125 .5

6

4 .0625

.25.

  

  


  

 



P C  

Now, either team has an equal probability (.5) of winning the 5th game. The probability of Team 
A winning the fifth game is .25×.50=.125; the probability of Team B winning the fifth game is also .125. 
So, the probability of either Team A or Team B winning the series in 5 games is .125 + .125 = .25, the 
probability that the series ends in exactly 5 games. 

For the series to end in exactly 6 games, one of the teams would have had to have won three of 
the previous 5 games. The probability of winning three of the previous five games is given by 

3 (5 3)

3 5 3

3 2

.5 .5

5!
.5 .5

3!(5 3)!

10 .125 .5

.3125.

  
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
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

P C  

Either team has a .3125 probability of winning three of the first five games and a .5 probability 
of winning the sixth game. Hence, the probability of Team A winning the series in six games is .3125 × .5 
= .15625. Since both teams have the same probability of winning in 6 games the probability Team A or 
Team B winning in six games is .15625+.15625=.3125. 

To complete the solution, compute the probability of three wins in the previous 6 games (.3125) 
and multiply this by the probability of a win in the 7th game (.5), yielding a .15625 probability one of the 
teams will win the series in seven games. But, since either team could win the series, the probability that 
one or the other team will win the series in the 7th game is .15625 + .15625, or .3125. 

So the probabilities of winning the series in exactly 4, 5, 6, or 7 games, rounded to two decimal 

places, is: 



Number of 

Games to Win 

 

Probability 

4 .06 

5 .25 

6 .31 

7 .31 

In his article, Stein points out that in 50 years' worth of World Series (1952-2002) the 
probabilities were actually quite different:  

Probabilities of World Series 

Wins Over the Years, 1952 

to 2002 

Number of 

Games to Win 

 

Probability 

4 .16 

5 .16 

6 .20 

7 .48 

For an explanation, see Stein’s article. 

Yet Another Example. We can use the binomial distribution to calculate number of items we 
need for a true-false test to yield meaningful results. By “meaningful results,” here, I mean results that 
can tell us, reliably, whether an examinee is proficient (acquired knowledge in the subject area tested). 

Suppose we want to administer a True-False test, but want a score of 70 percent items correct 
to be a reliable score. By reliable, here, I mean a score that is statistically, significantly greater than a 
chance score of 50 percent items correct. To be statistically significant, the score needs to be one that 
would occur by chance alone 5% or less of the time. Stated in probability terms, we want, Pr{ } .05X  , 

or Pr{70% of K } .05 , where K is the number of items in the test. In the following table, the 

probabilities of X equal to, or greater than, 70%, are shown for True/False tests of various lengths. You 
can see immediately that, for a 10-item test, to have a reliable score, X would have to be at least 9. But, 
a score of 9 out of 10 correct  does not leave much room for differentiation. For a 15-item T/F test, a 
score of 11 is the lowest reliable score, but again, the differentiation occurs only for scores of 11 
through 15, or 73%, 80%, 87% and 100%. A T/F score of 12 on a 16-item T/F gives, what would normally 
be considered a sufficient range of reliable scores. 

 A 4-choice, multiple-choice test would require considerably fewer items to yield a sufficient 
range of reliable scores. As shown in the next table, an 8-item MC test can yield a sufficient range of 
reliable scores (62% to 100%). And, with a 10-item MC test, a good range of reliable scores begins with a 
score of 6 items correct. 



True-False Test 

Number of 

Items 

(trials) 

Score 

(number 

correct) = X 

 

Probability 

of X 

Probability 

of X or 

Greater 

10 7    (=70%) .111 .172 

10 8    (=80%) .044 .055 

10 9    (=90%) .001 .011 

15 10  (=67%) .092 .151 

15 11  (=73%) .042 .060 

15 12  (=80%) .014 .018 

15 13  (=80%) .003 .004 

15 14  (=87%) .000 .000 

16 11  (=69%) .067 .105 

16 12  (=75%) .028 .038 

16 13  (=81%) .009 .011 

16 14  (=88%) .002 .022 

16 15  (=94%) .000 .000 

 

4-choice Multiple Choice Items 

Number of 

Item (trials) 

Score 

(number 

correct) = X 

Probability 

of X 

Probability 

of X or 

Greater 

5 3   (=60%) .088 .104 

5 4   (=80%) .015 .016 

6 3   (=50%) .132 .170 

6 4   (=67%) .033 .038 

6 5   (=83%) .004 .005 

7 4   (=57%) .058 .071 

7 5   (=71%) .011 .013 

7 6   (=86%) .001 .001 

8 4   (=50%) .086 .114 

8 5   (=62%) .023 .027 



8 6   (=75%) .003 .004 

8 7   (=88%) <.001 <.001 

9 4  (=78%) .117 .166 

9 5   (=56%) .039 .049 

9 6   (=67%) .008 .010 

9 7   (=78%) .001 .001 

9 8   (=89%) <.001 <.001 

10 5   (=50%) .058 .078 

10 6   (=%) .016 .020 

10 7   (=%) .003 .004 

10 8   (=%) <.001 <.001 

10 9   (=%) <.001 <.001 

 

Mean and Variance of the Binomial Distribution 

For an individual trial, where X=1 for a success and X=0 or a failure, the mean of X is equal to 

X
,


 p

n
 and the variance is equal to pq. For a distribution with n trials the 

Mean = p, and 

Variance = npq. 

Sample Proportions 

If we know that the count X of "successes" in a group of n observations with success 
probability p has a binomial distribution with mean np and variance np(1-p), then we are able 
to derive information about the distribution of the sample proportion (the count of successes X 
divided by the number of observations n). By the multiplicative properties of the mean, the 
mean of the distribution of X/n is equal to the mean of X divided by n, or np/n = p. This proves 
that the sample proportion is an unbiased estimator of the population proportion p. The 
variance of X/n is equal to the variance of X divided by n², or (np(1-p))/n² = (p(1-p))/n . This 
formula indicates that as the size of the sample increases, the variance decreases.  

Chi-Square and t Distributions. 

Chi-square (χ2) distribution. Point your browser to the Stat Trek tutorial on the Chi-square 
distribution. Read through the lesson and make sure you understand the problems (and the use of the 
Chi-Square Distribution Calculator) given at the end of the lesson. 

t distribution.  Stat Trek also has an excellent tutorial on the t distribution. Go there and read 
the whole lesson. While, working through the lesson, follow the link to the central limit theorem. Be 
sure you understand the two problems given at the end of the tutorial.  

http://stattrek.com/probability-distributions/chi-square.aspx?tutorial=ap
http://stattrek.com/probability-distributions/chi-square.aspx?tutorial=ap
http://stattrek.com/Tables/ChiSquare.aspx
http://stattrek.com/probability-distributions/t-distribution.aspx?Tutorial=AP
http://stattrek.com/Help/Glossary.aspx?Target=Central_limit_theorem
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