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Unbiased estimates of population parameters 

 A statistic, w, computed on a sample, is an unbiased estimate of a population parameter, 

θ, if its expected value [ℰ (w)] is the parameter, θ.  

Unbiased estimate of the population mean 

 It is easy to show, for example, that the sample mean, X , provides an unbiased estimate 

of the population mean, μ. 
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However, any ℰ (
iX ) is, by definition, µ, for all observations taken from the same population. 

Therefore,  
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Unbiased estimate of the population variance 

 In contrast, it can be shown that the sample variance, s
2
, is a biased estimate of the 

population variance, σ
2
,  i.e., that ℰ (S

2
) ≠ σ

2
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Consider, first, the first term to the right of the equal sign in (3), above. 
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By definition, the population variance is, 

 2 2 2X   ;                                   (5)     

so that, for any observation, i, 
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Substituting (6) into (4) yields, 
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Now, consider the second term to the right of the equal sign in (3),  2X . The variance of the 

sampling distribution of means is: 
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from which, 
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X
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Substituting the expressions, (7) and (9) into (3) yields: 
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In words, the expected value of the sample variance is the difference between the population 

variance, 2 , and the variance of the distribution of sample means, 2

X
 . Since the variance of the 

distribution of sample means typically is not zero, the sample variance under-estimates the 

population variance. In other words, the sample variance is a biased estimator of the population 

variance. 

It has already been demonstrated, in (2), that the sample mean, X , is an unbiased estimate of the 

population mean, µ. Now we need an unbiased estimate ( 2s ) {note the tilde to imply estimate} 

of the population variance σ
2
. In (10), it was shown that 
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which, after substituting (11), yields 
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Equation (13) shows that the average of the sample variances [ 2( )s ] is too small by a  

factor of .
1

N

N 
 

Hence, an unbiased estimate of 2  is given by 
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It is easy to show that 2ŝ is an unbiased estimate of 2 : 
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Unbiased estimate of the standard error of the mean,
X

 . 

 The unbiased estimate of 
X

 is given by ˆ
X

s , where 
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In words, the unbiased estimate of the standard error of the mean is the unbiased estimate of the 

population standard deviation divided by the square root of the sample size. 

 


